A ggplot2 geom for chromosome ideogram.
Usage
geom_ideogram(
mapping = NULL,
data = NULL,
stat = StatIdeogram,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...,
genome = "hg19",
chrom_prefix = TRUE,
highlight = FALSE,
width_ratio = 1/30,
length_ratio = 0.8,
fontsize = 10,
colour = "red",
fill = "#FFE3E680"
)
Arguments
- mapping
Set of aesthetic mappings created by
aes()
. If specified andinherit.aes = TRUE
(the default), it is combined with the default mapping at the top level of the plot. You must supplymapping
if there is no plot mapping.- data
The data to be displayed in this layer. There are three options:
If
NULL
, the default, the data is inherited from the plot data as specified in the call toggplot()
.A
data.frame
, or other object, will override the plot data. All objects will be fortified to produce a data frame. Seefortify()
for which variables will be created.A
function
will be called with a single argument, the plot data. The return value must be adata.frame
, and will be used as the layer data. Afunction
can be created from aformula
(e.g.~ head(.x, 10)
).- stat
The statistical transformation to use on the data for this layer. When using a
geom_*()
function to construct a layer, thestat
argument can be used the override the default coupling between geoms and stats. Thestat
argument accepts the following:A
Stat
ggproto subclass, for exampleStatCount
.A string naming the stat. To give the stat as a string, strip the function name of the
stat_
prefix. For example, to usestat_count()
, give the stat as"count"
.For more information and other ways to specify the stat, see the layer stat documentation.
- position
A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The
position
argument accepts the following:The result of calling a position function, such as
position_jitter()
. This method allows for passing extra arguments to the position.A string naming the position adjustment. To give the position as a string, strip the function name of the
position_
prefix. For example, to useposition_jitter()
, give the position as"jitter"
.For more information and other ways to specify the position, see the layer position documentation.
- na.rm
If
FALSE
, the default, missing values are removed with a warning. IfTRUE
, missing values are silently removed.- show.legend
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.FALSE
never includes, andTRUE
always includes. It can also be a named logical vector to finely select the aesthetics to display.- inherit.aes
If
FALSE
, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g.borders()
.- ...
Parameters to be ignored.
- genome
The genome name. Default is
"hg19"
.- chrom_prefix
Whether the input data has chromosome names with prefix 'chr' or not. Default is
TRUE
.- highlight
Whether to highlight the boundary of the chromosome. Default is
TRUE
.- width_ratio
The ratio of the width of each chromosome ideogram relative to the height of the Hi-C plot. Default is
1/30
.- length_ratio
The ratio of the length of each chromosome ideogram relative to the width of the Hi-C plot. Default is
0.8
.- fontsize
The font size of the chromosome name. Default is
10
.- colour
The color of the chromosome boundary. Default is
"red"
.- fill
The fill color of the highlighted region on the ideogram. Default is
"#FFE3E680"
.
Examples
if (FALSE) { # \dontrun{
library(gghic)
library(ggplot2)
library(dplyr)
library(HiCExperiment)
library(InteractionSet)
library(scales)
library(glue)
library(rappdirs)
dir_cache_gghic <- user_cache_dir(appname = "gghic")
url_file <- paste0(
"https://raw.githubusercontent.com/mhjiang97/gghic-data/refs/heads/",
"master/cooler/chr4_11-100kb.cool"
)
path_file <- file.path(dir_cache_gghic, "chr4_11-100kb.cool")
download.file(url_file, path_file)
hic <- path_file |>
CoolFile() |>
import()
gis <- interactions(hic)
gis$score <- log10(gis$balanced)
x <- as_tibble(gis)
scores <- x$score[pairdist(gis) != 0 & !is.na(pairdist(gis) != 0)]
scores <- scores[!is.na(scores) & !is.infinite(scores)]
x$score <- oob_squish(x$score, c(min(scores), max(scores)))
p <- x |>
filter(seqnames1 == "chr11", seqnames2 == "chr11") |>
ggplot(
aes(
seqnames1 = seqnames1, start1 = start1, end1 = end1,
seqnames2 = seqnames2, start2 = start2, end2 = end2,
fill = score
)
) +
geom_hic() +
theme_hic()
p + geom_ideogram(
genome = "hg19", highlight = FALSE, length_ratio = 0.7, fontsize = 8
)
} # }